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J .  Phys. A: Math. Gen. 20 (1987) 6303-6307. Printed in the U K  

Convergence radii of the Rayleigh-Schrodinger perturbation 
series for the bounded oscillators 

Francisco M Fernindez, Gustavo A Arteca and Eduardo A Castro 
lnstituto de lnvestigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Division 
Quimica Teorica, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina 

Received 17 March 1987 

Abstract. The convergence radii of the Rayleigh-Schrodinger perturbation series for some 
bounded oscillators are calculated. The eigenvalues with quantum numbers n = 0 and 
n = 2, as well as those with n = 1 and n = 3, are found to cross at a pair of conjugate branch 
points of order two in the complex plane. Higher excited states are briefly discussed. 

1. Introduction 

The Rayleigh-Schrodinger perturbation theory is frequently applied to quantum 
mechanical problems to obtain an expansion of the energy E in powers of the 
perturbation parameter A : 

X 

E = 1 E,AJ. 
,=0 

Quite often such a series has a finite convergence radius determined by the closest 
singularity to the origin (in the complex A plane). 

The calculation of the singular points of € ( A )  is very difficult for most physically 
interesting problems. However, the study of some simple examples may lead to a 
better insight into the subject. Among them we mention the delta-potential models 
(Certain and Byers Brown 1972, Fernindez et al 1987 and references therein), the 
perturbed harmonic oscillator (Bender et a1 1974), the Stark effect in rigid rotators 
(Fernindez and  Castro 1985, Maluendes et a1 1985, Fernindez et a1 1987) and the 
Mathieu equation (McLachlan 1947, FernPndez et a1 1987). Except for some very 
simple problems, the direct calculation of the branch points of E ( A )  (Certain and 
Byers Brown 1972, FernPndez and Castro 1985, Maluendes et a1 1985, Fernindez et 
a1 1987) is quite cumbersome and it is sometimes preferable to obtain them from the 
behaviour of E, for large j (Fernindez et a1 1987), though this method is less accurate, 

The purpose of the present paper is to obtain the singular points of the eigenvalues 
W ( b )  of the bounded oscillators 

(1) 

where k = 1 , 2 , .  . . , and U’( - b )  = P( b )  = 0. The change of variables x + bx enables one 
to rewrite (1) as 

(2) 

P y x )  + ( w -x”)P(x)  = 0 

@”( X )  + ( E  -  AX'^ )@(-U) = 0 
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where A = b'"+'', E = b 2 W  and @( -1) = @( 1)  = 0. According to the Kato-Rellich 
theorem (Kato 1976) the A perturbation series for E ( A )  has a finite convergence radius. 
Upper bounds to it have already been calculated in the case of two- and three- 
dimensional bounded harmonic oscillators ( Aguilera-Navarro er a1 1983). 

The perturbation coefficients E, for the one-dimensional oscillators (2) are obtained 
in Q 2. A method for calculating the branch points of E ( A )  from the asymptotic form 
of E, is shown in 5 3. Numerical results are discussed in 5 4. 

2. Perturbation series 

The perturbation series for the eigenvalues of (2) can be easily and  accurately cal- 
culated by means of the hypervirial perturbative method (FernAndez and Castro 
1981a, 1982). The perturbation corrections are given by the following recurrence 
relations (Fernandez and Castro 1981a, 1982): 

A:= 1 / (N+1) -N(N-1)Ap-2 / (4e , , )  (30 )  

j > O  

where N = 0 , 2 , .  . . , M = 1 ,2 ,  . . . , e,, = ( n  + 1)'&/4 and n = 0, 1, . . . , is the quantum 
number. The starting point is A& = S,Uuo. 

Equations (3) are not useful for large-order numerical calculations because the 
errors increase quickly with N and M. It is advisable to use the backward recurrence 
relations 

(4b )  
Since A :, tends to zero as N increases we can choose A :, = 0 for a large enough N 
value and then proceed backwards calculating all the perturbation corrections for 
M = 0, 1, . . . . The accuracy of the results is easily checked because the first perturbation 
corrections can be obtained analytically (FernAndez and Castro 1981a, 1982). N = 500 
is found to be an acceptable starting point for the procedure that ends when the 
calculated A: and A':, ( M  > O )  are of the same order of magnitude (notice that A& 
will not be exactly equal to aV, )  when using the backward recurrence relation because 
the starting point is approximate). 

3. Branch points 

Let f( z 1 be a function ol'the complex variable z = x + iy so that f ( x )  is real. Therefore, 
each singular point o f j ( z )  is either real or complex conjugate of another one. 

The convergence radius of the Taylor series 
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is determined by the closest singular point to the origin. We suppose that f ( z )  has a 
pair of branch points at zo and  z t ,  where zo=xl,+iyl, .  In the neighbourhood of any 
of them f( z )  behaves approximately as 

f (  Z )  == A( Z' - 2x02 + x i +  ut)"  ( 6 )  

where a is a real number and A can be real or complex. 
Our main assumption is that the behaviour off; for large j can be obtained from 

the Taylor coefficients of (6) provided that the moduli of the other singularities are 
larger than (zo(. 

In order to obtain a and  zo we proceed as follows. The coefficients Y,  of the Taylor 
expansion about the origin for the ansatz 

Y (  z )  = E (  z 2  - 2uz + r 7 ) e  

( j  - 2 e  - 1)  Y,- ,  + 2 u ( e  - j )  Y, + rz(  j +  1) Y,+, = o 

(7) 

where B, U, r2 (=x i+&)  and e are adjustable parameters, obey 

(8) 

where j = 0, 1, . . . , and Y,  = 0 i f j  < 0. I f f r  is substituted for Y, in (8) with j = m, m + 1 
and m + 2 ,  we obtain three equations that can be solved for the unknowns e, U and 
r'. Since the results depend on m the procedure gives rise to three sequences e, ,  U, 
and r k  that are expected to converge towards a, xo and x : + y i ,  respectively, as m 
tends to infinity. Extensive numerical investigation covering a large number of examples 
shows that the method is convergent provided that the conditions stated above are 
fulfilled (Fernandez er a1 1987). 

The results are largely improved when the actual a value is known beforehand. In 
such a case we substitute a for b in (8) and  proceed as before (using only pairs of 
equations) to obtain the sequences U, and r i .  

The eigenvalues of most linear operators exhibit branch points of order two 
characterised by the condition (Certain and Byers Brown 1972, Fernandez and Castro 
1985, Bender et a1 1974, Simon 1970) 

dhldE = 0. (9) 

In  such cases a = i. Examples of this are the bounded oscillators (2) as shown below. 

4. Results and discussion 

We have investigated the cases k = 1, 2 and  3 drawing general conclusions that seem 
to apply to all the oscillators. For example, the large-order energy perturbation 
corrections for the first two even states have almost the same magnitude but different 
signs. This fact reveals that they are branches of the same branch point and thereby 
have the same convergence radius. This is also the case for the first two odd states. 

The sequences e, ,  U, and rfn for the bounded harmonic oscillator are partly 
displayed in table 1. The second column suggests that that a = $ and when introducing 
this value into the calculation the sequences U, and r ,  become smoother (compare 
columns 3 and 4 with 5 and  6, respectively). Since similar results have been obtained 
for all the states and  oscillators investigated, we assume a = f  and consider only the 
U, and r,, sequences obtained when e = from now on. 

The estimated branch points for the harmonic oscillator are shown in table 2 .  The 
sequences e ,  for the states with quantum number n > 3  are strongly oscillatory, 
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Table 1. Sequences e, , , ,  U,,, and r,,,  icf ( 7 ) )  for the ground state of the hounded harmonic 
oscillator ( l i  = I i. a:  using e = a = + .  

36 0.5054 - 17.7240 28.45 18 - 17.7271 28.4568 
37 0.5089 - 17.7220 28.4487 -17.7267 28.4563 
38 0.5200 - 17.71 59 28.4395 -17.7268 28.4559 
39 0.5017 - 17.7261 28.4547 -17.7270 28.4561 
40 0.5065 -17.7235 28.4508 -17.7267 28.4559 

Table 2. Closest branch points to the origin for the first eigenvalues of the bounded 
harmonic oscillator. bo and  A,, a re  related by the scaling transformation in (2 ) .  

0 -17.727 22.260 28.456 2.310 
1 -10.19 46.073 47.187 2.621 
2 -17.727 22.260 28.456 2.310 
3 -10.19 46.073 47.187 2.621 
4 3.8 71 71 2.9 
5 23.4 96 99 3.2 
6 48 122 131 3.4 

suggesting the interference of other singularities. However, when setting e = 4 the 
sequences U, and I,,, are smooth enough to obtain approximate zo values. Their 
accuracy will be checked by diagonalising the matrix of the complex Hamiltonian 
operator and results will be published elsewhere in a forthcoming paper. 

The s-state eigenvalues of a three-dimensional isotropic oscillator are equal to the 
odd-state ones of the one-dimensional model. However, the present convergence radius 
for the first excited state of the bounded harmonic oscillator is found to be larger than 
the upper bound obtained by Aguilera-Navarro er a1 (1983). 

The conclusions about the branch points of the harmonic oscillator also apply to 
the other oscillators. Tables 3 and 4 show some numerical results for the quartic ( k  = 2) 
and sextic ( k = 3 )  oscillators, respectively. It is clear that the convergence radius of 
the perturbation series in powers of b (Fernandez and Castro 1981a, 1982) for a given 
state decreases as k increases. This is due to the fact that the larger the k values the 
stronger the perturbation. 

Table 3. Closest branch points to the origin ( A t i )  for the first eigenvalues of the hounded 
quartic oscillator ( k  = 2) .  

0 -36.228 28.454 46.066 1.893 

2 -36.228 28.454 46.066 1.893 
1 -30.744 54.870 62.896 1.994 

3 -30.744 54.870 62.896 1.994 
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Table 4. Closest branch points to the origin ( A l l )  for the first eigenkalues of the bounded 
sextic oscillator ( k  = 3 )  

n Re A, 'Vm A,I lAl,l bo = l A o l '  

0 -60.74 35.61 70.41 1.702 
1 -56.40 67.04 87.61 1.749 
2 -60.74 35.61 70.41 1.702 
3 -56.40 67.04 87.61 1.749 

The bounded oscillators in more than one dimension can also be treated as shown 
above because the peturbation series can be easily obtained by means of the hypervirial 
perturbative method (Fernindez and Castro 1981b). 

We hope that present conclusions will motivate a rigorous mathematical investiga- 
tion of the singular points of the bounded-oscillator eigenvalues. It may be very helpful 
in understanding more complex problems. 
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